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ABSTRACT
Malicious JavaScript code in webpages is a pressing prob-
lem in the Internet. Classic security tools, such as anti-virus
scanners, are hardly able to keep abreast of these attacks,
as their obfuscation and complexity obstructs the manual
generation of signatures. Recently, several methods have
been proposed that combine JavaScript analysis with ma-
chine learning for automatically generating detection mod-
els. However, it is open how these methods can really op-
erate autonomously and update detection models without
manual intervention. In this paper, we present an empirical
study of a fully automated system for collecting, analyz-
ing and detecting malicious JavaScript code. The system is
evaluated on a dataset of 3.4 million benign and 8,282 ma-
licious webpages, which has been collected in a completely
automated manner over a period of 5 months. The results
of our study are mixed: For manually verified data excellent
detection rates up to 93% are achievable, yet for fully auto-
mated learning only 67% of the malicious code is identified.
We conclude that fully automated systems are still a vision
and several challenges need to be solved first.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.5.1 [Pattern Recognition]: Mod-
els—Statistical

Keywords
Javascript Attacks, Anomalous Behavior Detection, Mal-
ware Identification

1. INTRODUCTION
According to a recent study of Symantec [26], the number

of JavaScript attacks in the Internet has almost doubled in
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the last year, reaching peaks of over 35 million attacks per
day. As part of these attacks, malicious JavaScript code is
planted on webpages, such that a user visiting the webpage
is automatically attacked and unnoticably infected with ma-
licious software. The success of these attacks is rooted in
the close interaction of the JavaScript interpreter with the
web browser and its extensions. Often it is possible with a
few lines of code to probe and exploit vulnerabilities in the
browser environment [5, 7].

Unfortunately, the detection of malicious JavaScript code
is a challenging task: JavaScript attacks are small programs
that are executed in the web browser. The attacker can build
on the full flexibility of interpreted code, which allows him
to easily obfuscate his code as well as dynamically exploit
different types of vulnerabilities. Common security tools,
such as anti-virus scanners, are hardly able to keep abreast
of these attacks, as the obfuscation and complexity obstruct
the manual generation of effective signatures. As a result,
malicious JavaScript code is often insufficiently detected due
to a lack of up-to-date signatures [22].

As a remedy, several detection methods have been pro-
posed that combine JavaScript analysis with techniques from
the area of machine learning. These methods build on the
ability of machine learning to automatically generate detec-
tion models from known samples of benign and malicious
JavaScript code and thereby avoid the manual crafting of
signatures. Common examples are the detection systems
Cujo [22], Zozzle [4] and IceShield [10], which are capa-
ble of accurately identifying malicious code in webpages at
run-time with few false alarms.

Learning-based detection provides a promising ground for
mitigating the threat of malicious webpages. However, to
take effect and provide advantages over signature-based tools,
learning-based methods need to operate with very little man-
ual intervention. From the acquisition of training data to the
generation of detection models, the learning process needs
to be largely automatic to quickly adapt to the development
of malicious software. Previous work has ignored this issue
of automatic learning and it is open whether learning-based
detection methods can really operate autonomously over a
longer period of time.

In this paper, we test the feasibility of automatic learning
and present an empirical study of a fully automated system
based on the detector Cujo [22]. The system (a) retrieves
benign and malicious JavaScript code from the Internet, (b)



identifies malicious functionality using client-based honey-
pots and (c) learns a detection model from features of static
and dynamic analysis in regular intervals. We evaluate the
system on a dataset of 3.4 million benign and 8,282 mali-
cious webpages, which has been acquired over a period of 5
months. In particular, we study the detection performance
as well as the learning process over time for different fea-
tures and learning methods, such as anomaly detection and
classification approaches.

The results of our study are mixed: In line with previ-
ous work, the system attains a high detection rate of 93%
if applied to manually verified data. However, in a fully au-
tomated setting it identifies only 67% of the malicious code
in webpages—irrespective of the used features and learning
methods. We identify two main factors that contribute to
this decrease:

• Semantic gaps: It is considerably hard to verify the
presence of malicious activity during the visit of a web-
page and use the exact same information at a later
stage for learning. If both stages differ only slightly,
malicious activity may be present but is not exposed
to the learning method.

• Time delays: JavaScript attacks are very volatile and
often active for only a few hours. Due to the large
amount of processed data, a significant amount of time
may pass between the verification of a malicious web-
page and the resulting learning stage. If the malicious
code is not present anymore, the detection model is
trained on incomplete data.

Overall, we conclude from our study that fully automated
systems for detection of JavaScript attacks are still an open
problem and there exist several practical challenges that
need to be addressed first.

The rest of this paper is structured as follows: We first
discuss related work in Section 2. Section 3 then introduces
our framework for data acquisition and presents details of
the collected JavaScript code. Section 4 describes the fea-
tures and learning methods used in our system. Section 5
finally presents the results of our study and discusses their
implications. Section 6 concludes.

2. RELATED WORK
Before presenting our study on learning-based detection

of malicious JavaScript code, we first review some related
work. In particular, we discuss related approaches for an-
alyzing and detecting malicious code in webpages. These
approaches can be roughly categorized into client-based hon-
eypots, analysis systems and detection systems, where these
categories are not rigid and some systems implement a mix-
ture of functionalities.

2.1 Client-based Honeypots
To systematically monitor and understand the phenomena

of JavaScript attacks, several honeypot systems have been
devised that visit webpages and mimic the behavior of users.
One class of these systems are high-interaction honeypots
[e.g., 20, 23, 25, 27], which operate a real browser in a sand-
box environment and detect attacks by monitoring unusual
state changes in the environment, such as modified system
files. Another class of these systems are low-interaction hon-
eypots, which only emulate the functionality of web browsers

and corresponding vulnerabilities for tracking malicious ac-
tivity [e.g., 1, 11, 19].

Both types of honeypots are valuable sources for collecting
JavaScript attacks, especially in combination with systems
for efficient retrieval of potentially malicious webpages [12].
In contrast to server-based approaches, client-based honey-
pots are capable of actively searching for malicious code
and allow to capture instances of novel attack campaigns
early on. As a consequence, client-based honeypots are
widely used and can be considered a standard for monitoring
JavaScript attacks in the wild.

2.2 Analysis Systems
Collecting malicious JavaScript code, however, is only a

first step in crafting effective defenses. A second strain of
research has thus focused on methods for automatically an-
alyzing the collected code and extracting security-relevant
information, such as patterns indicative for attacks. Most
notable here is the community service Wepawet that is
backed by a chain of analysis tools for collecting, filtering
and analyzing JavaScript code [2, 3, 12]. The service au-
tomatically analyzes webpages using an emulated browser
environment and is able to identify anomalous behavior in
the code using machine learning techniques.

In contrast to Wepawet, which performs an analysis of
webpage content in general, other systems address particular
aspects of JavaScript attacks [e.g., 13, 14]. For example,
the analysis system Rozzle implements an involved multi-
path execution for JavaScript code. Instead of following a
single execution flow, the method inspects multiple branches
of execution and thereby exposes hidden and conditional
functionality of JavaScript attacks.

Although very effective in analyzing code and identify-
ing JavaScript attacks, the presented analysis systems are
mainly designed for offline application and induce an over-
head which is prohibitive for real-time detection. For exam-
ple, Cova et al. [3] report an average processing time of 25
seconds per webpage for Wepawet. For this reason, we do
not consider methods for offline analysis in our study—even
if they employ learning-based components. Nevertheless,
many of the techniques implemented for offline analysis are
also applicable in online detection systems [14].

2.3 Attack-specific Detection
The first methods capable of detecting malicious code at

run-time have been proposed for specific types of JavaScript
attacks [e.g., 8, 21]. These methods proceed by monitoring
the browser environment for known indicators of certain at-
tack types. For example, the system Nozzle scans string
objects for fragments of executable code, a typical indica-
tion of heap-spraying and other memory corruption attacks.
While these approaches provide a low run-time, they are in-
herently limited to particular attacks and do not provide a
generic protection from malicious JavaScript code.

A more generic detection of JavaScript attacks is achieved
by the systems Blade [17] and Arrow [28], which identify
attacks using indicators outside the browser environment.
In particular, Blade spots and blocks the covert installa-
tion of malware as part of drive-by downloads, whereas Ar-
row generates detection patterns for the URLs involved in
JavaScript attacks. Both methods intentionally do not an-
alyze JavaScript code and are thus independent of specific
attack types. However, by ignoring the actual attack code,



these methods critically depend on the presence of the con-
sidered indicators in practice.

2.4 Learning-based Detection
The demand for a generic detection of malicious code

has finally motivated the development of efficient learning-
based detection systems, such as Cujo [22], Zozzle [4],
and IceShield [10], which are the main focus of our study.
These systems analyze webpages at run-time and discrimi-
nate benign from malicious JavaScript code using machine
learning techniques. In contrast to offline analysis, they in-
duce only a minor run-time overhead and can be directly
applied for protecting end user systems.

At the core of these learning-based approaches are two
central concepts: the considered features and the learning
model for detecting attacks. For example, Zozzle mainly
extracts features from a static analysis of JavaScript code,
whereas IceShield monitors the execution of code dynam-
ically and constructs behavioral features. Moreover, many
efficient detection systems employ a supervised classification
approach for learning, while the offline system Wepawet
successfully uses unsupervised anomaly detection for iden-
tifying attacks. We study these concepts and related differ-
ences in our evaluation in more detail later.

3. DATA ACQUISITION
A key for evaluating learning-based detection systems is

a realistic dataset of malicious and benign JavaScript code.
Previous work has suggested to automatically acquire such
data using client-based honeypots and offline analysis sys-
tems. This is clearly a promising approach, as it allows for
automatically updating and re-training learning-based sys-
tems on a regular basis. However, almost no research has
explored this approach in depth. Most of the results re-
ported for learning-based detection have been obtained on
a single dataset with manually cleansed training data.

In this study, we investigate how learning-based systems
perform if they are regularly and automatically updated
with malicious and benign data without human sanitization.
To this end, we have devised a framework that visits ma-
licious and benign webpages on a daily basis and returns
reports for static and dynamic analysis of the contained
JavaScript code.

3.1 Collection Framework
An overview of the collection framework is presented in

Figure 1. The framework is constructed using existing se-
curity instruments, such as public services and client-based
honeypots, and only serves the purpose of automatically re-
trieving large amounts of benign and malicious JavaScript
code. Note that the framework is not designed to gain in-
sights into the malware ecosystem. Moreover, we deliber-
ately exclude learning-based components from the frame-
work, such as Prophiler [2] and Jsand [3], as they may
bias the evaluation of learning-based detection methods to-
wards their specific feature sets.

3.1.1 Sources for URLs
At the start of each day sources of potentially benign and

malicious URLs are harvested. For the benign URLs we
consider rankings and listing of popular webpages. In par-
ticular, we randomly sample 25.000 URLs per day from the
Alexa ranking, which lists the top 1 million web pages ac-

cording to visitors and page views. Popular web pages are
not necessarily attack-free. In fact, attackers invest consid-
erable effort into comprising popular webpages and exposing
malicious code to a large group of users. Consequently, we
cannot rule out that some of the 25.000 URLs are compro-
mised, yet we assume that the vast majority of the URLs is
benign. Moreover, we take precautions in the later verifica-
tion to filter out known instances of JavaScript attacks.

For collecting potentially malicious URLs, we visit com-
mon blacklists and services tracking malicious URLs. As
an example, we query the database service Harmur [16] for
all malicious URLs that have been submitted in the last 24
hours. Furthermore, we regularly retrieve URLs from search
engines using “dangerous” search terms. In total our frame-
work collects about 8,000 potentially malicious URLs per
day. Similarly to the benign sources, these URLs are not
guaranteed to be malicious and thus the subsequent verifi-
cation of the data is an indispensable step.

3.1.2 Verification
The collected benign and malicious URLs are far from be-

ing an ideal source for training and evaluating learning-based
systems. First, the data is not guaranteed to be of a certain
type and, second, even if a URL points to a malicious web-
page, this does not necessarily indicate that JavaScript code
is involved. Note that phishing and other scam webpages are
also often flagged as malicious but do not contain any mali-
cious JavaScript code. To improve the quality of our data,
we thus employ a verification stage that filters the data, such
that malicious and benign JavaScript code is obtained with
high probability. For this task we focus on tools that could
also be applied in a practical deployment scenario, that is,
we conduct the verification on a single workstation and only
use techniques that return results within a few hours.

We apply the following two verification procedures to be-
nign and malicious URLs, respectively:

(a) For improving the quality of benign URLs, we filter
out blacklisted URLs from the 25,000 URLs collected
per day. To carry out this task efficiently, we use
the Google Safe Browsing service that provides a fre-
quently updated list of malicious URLs. The main goal
of this stage is to remove known malicious code from
the benign dataset.

(b) We analyze all collected malicious URLs using a high-
interaction honeypot. In particular, we use the hon-
eypot Shelia [23] which monitors a target application
and employs taint tracking for identifying memory cor-
ruption and code injection attacks. As target applica-
tion we use the Internet Explorer 6.

As a result of this analysis, we can refine our collected data
to webpages that are either (a) likely benign and not con-
tained in blacklists or (b) likely malicious and cause mem-
ory corruption or redirection of control flow during execu-
tion. We focus on a particular setting, namely Shelia and
the Internet Explorer 6, as this browser version is known
for several public vulnerabilities and a frequent target of at-
tacks. Nevertheless, our framework could be easily extended
to also support other browsers and client-based honeypots
for the verification stage.
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Figure 1: A framework for acquisition and analysis of JavaScript code.

3.1.3 Javascript Analysis
While learning-based detection systems generally follow

the same design template, their inner working differs fun-
damentally. For example, Zozzle closely interacts with the
JavaScript interpreter of the Internet Explorer, IceShield
uses frozen DOM objects for tracking JavaScript execution
and Cujo makes use of a dedicated sandbox for analyzing
code. Clearly, integrating all these different technical sys-
tems into a single prototype and conducting a fair compar-
ison would be an intractable task.

Therefore we focus on a single system, namely Cujo, as
it provides static and dynamic analysis of JavaScript code.
While there are several subtle differences in how the code is
analyzed, the reports of the static and dynamic analysis are
basically similar to the representations of code used in the
other systems. Overall, we are not interested in benchmark-
ing concrete implementations but rather comparing under-
lying concepts, such as the use of static or dynamic code
analysis for detection.

Static analysis. The static analysis in our framework
first assembles the code base for a given URL by following
redirects and downloading referenced JavaScript code. The
assembled code is then parsed using a YACC grammar and
the parsed representation is passed as a report for further
analysis. A detailed description of the parsing process is
presented by Rieck et al. [22].

Dynamic analysis. Additionally, a dynamic analysis
of the JavaScript code is conducted. This analysis uses
an enhanced version of ADSandbox (ADS), an efficient
sandbox for JavaScript code. This sandbox is embedded in
the Internet Explorer and allows to observe the behavior of
JavaScript code in a secure environment. All interactions of
the code with the virtual browser are recorded and a detailed
report of the code’s behavior is generated. A description of
the sandbox is provided by Dewald et al. [6].

The presented framework enables us to automatically col-
lect benign and malicious webpages and to generate analysis
reports for each webpage on a daily basis. It is necessary to
note that analyzing over 25.000 URLs and processing 8,000
URLs with a honeypot each day is a challenging task. As
a consequence, several hours may pass during the process-
ing of a webpage and a verified malicious URL may not
necessarily expose malicious activity when it is later visited
using the JavaScript analysis. This problem of time delays
is inherent to our setting and would also exist in a practical
application. Hence, we do not artificially correct our data
and leave inactive attacks in our malicious dataset.

3.2 Collected Data Sets
The framework for data acquisition has been deployed on

April 19th 2011 at our site and collected malicious and be-
nign JavaScript code for a period of 5 months (137 days).
Though we do not artificially correct our data and leave
inactive attacks in our malicious dataset, the reports of
ADSandbox are filtered to remove those that are broken,
empty, timed out during the analysis or are too small to show
any specific behavior, since such reports corrupt the training
process with their inconsistent features. Table 1 shows the
total number of webpages before and after filtering, and the
resulting dataset sizes.

Benign Malicious
Total number of URLs 3,400,000 8,282
Number of filtered URLs 2,900,000 3,220
Total size of dataset 359,000 MB 130 MB
Size of filtered dataset 291,000 MB 77 MB
Unique filtered URLs 1,200,000 2,146

Table 1: Details of the acquired datasets.

As described in Section 3.1, initially 25.000 benign and
8,000 potentially malicious URLs have been collected per
day. The applied verification significantly reduced the num-
ber of malicious URLs, as only a fraction of the candidate
URLs has been capable to trigger an attack in our honeypot.
Figure 2 depicts the number of malicious URLs that have
been visited and verified per day.
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Figure 2: Number of malicious URLs visited per
day. The dashed line displays a 7-day average.

The corresponding size of the downloaded JavaScript code
per day for the benign and the malicious URLs, averaged for
each day, is depicted in Figure 3. An interesting observation
is the continuous growth of the amount of JavaScript code
found at the benign URLs, reflecting the generally increasing
importance of JavaScript. The peak at day 78 is due to a
down-time of our analysis system and the resulting queue
of unvisited webpages. For the malicious URLs a certain



kind of recurring structure seems to exist, showing a weekly
periodicity in the peaks and average lines. We credit this
finding to compromised workstation systems involved in the
attacks, e.g. by redirecting traffic or hosting landing pages.
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Figure 3: Average size of JavaScript code collected
per day from benign (top) and malicious (bottom)
URLs. The dashed line displays a weekly average.

4. LEARNING-BASED DETECTION
All learning methods heavily rely on the features chosen to

model a certain problem. The features for the detection of
malicious JavaScript code require the ability to reflect pat-
terns in the code as well as monitored malicious behavior.
Subsequently a proper learning method has to be selected,
which is capable of handling those features. To overcome
the limitation of choosing either a supervised or an unsu-
pervised learning method, we discuss a way of evaluating
both types of learning methods in a single setup. The fol-
lowing sections present this setup, the set of features and
learning methods considered in our study, and the resulting
learning framework.

4.1 Feature Extraction
We focus on features that can be extracted from the avail-

able static and dynamic reports. Those features are indepen-
dent of specific attack characteristics, while reflecting rele-
vant properties of the contained JavaScript behavior. In par-
ticular we apply q-gram-features to extract short string fea-
tures from the reports, as implemented in Cujo. Moreover,
we use specific numeric features derived from Wepawet and
Iceshield.

Q-gram features. Q-grams denote sequences of q words.
To extract q-grams from a static or dynamic report, the
report is transformed into a sequence of words, separated by
white-space characters. The desired q-grams are extracted
by sliding a window with the size of q words over the report
and storing the consecutive q words found at each position.
The following example depicts this procedure for a snippet
of a static report, using a value of q = 3:

ID = ID + x ⇒ { (ID = ID), (= ID +), (ID + x) }.

The procedure works similar for the dynamic reports, where
the SET command is executed on a variable x.y, leading to
a similar list of sequences:

SET x.y to ”a”⇒ { (SET x.y to), (x.y to ”a”) }.

In the next step the q-grams of each report are mapped
into a vector space spanned by all possible q-grams, that
is, each dimension is associated with the occurrences of one
particular q-gram. This results in a high-dimensional, yet
sparse vector for each report, which can be efficiently pro-
cessed [22].

Numeric features. Additionally, we derive 15 differ-
ent numeric features by analyzing the static and dynamic
reports, similar to the way such features are extracted in
Wepawet and Iceshield. These features are designed bear-
ing specific malicious JavaScript behavior in mind. Ex-
emplary features inspired by Wepawet are counts of the
occurrences of document.location or document.referrer,
the number of instantiated components, the number of times
code is executed dynamically or the ratio of string definitions
and string uses. Examples of features inspired by Iceshield
are the number of occurrences of dynamically injected code,
occurrences of potentially dangerous MIME-types or abnor-
mally long strings used in decoding functions.

Unfortunately we could not accurately re-produce the fea-
tures of Wepawet and Iceshield, as some of them require
information which is not contained in our analysis reports.
Thus the combination of this incomplete feature set and our
heterogeneous data leads to an insufficient detection per-
formance for these numeric features. To avoid a misleading
presentation of results, we therefore decided to omit numeric
features in the following experiments.

4.2 Learning-Based Detectors
Taking insights from Cujo, the behavior of different learn-

ing models is studied using Support Vector Machines (SVM)
[18, 24] with linear kernels. Though other approaches like
decision trees work as well, SVMs offer a high performance
and are robust against noise in the data. The feature space
depends on the choice of the kernel. Focusing specifically on
SVMs with a linear kernel has two advantages. The first one
is the ability to process big datasets of very high dimension-
ality very fast. While Gaussian kernels often lead to better
results than using a linear kernel, this comes at a massively
increased cost of run-time and memory requirements. The
second advantage is the opportunity to parametrically bal-
ance the influence of differently sized datasets during train-
ing. Before discussing this in more detail, some conceptual
basics are covered.

Basics of two-class SVMs. A two-class SVM model is
trained on datasets of two classes. Objective of the train-
ing is to find a hyperplane between the two classes which
separates them with a maximal margin. The data points
of each class with feature vectors closest to this margin are
denoted as support vectors. In our setting, those two classes
correspond to the reports retrieved from the benign and the
malicious URLs. For each report the feature vectors are
extracted. Once the model is trained on the feature vec-
tors of those two datasets, an unknown report can be clas-
sified very fast. For this purpose the feature vector of this
unknown report is extracted. Afterwards its position and
distance from the hyperplane allows to predict the corre-
sponding class membership. Figure 4 depicts an example
of benign (white) and malicious (black) data points, where
different models have been trained on. The dashed line of
the middle image represents the separating hyperplane.

Two-class learning methods work best if the two classes
have a comparable size. If one of the classes is much bigger,



Figure 4: Visualization of different models achieved
by different values of ω.

however, this approach often leads to suboptimal models.
In that case one-class learning is often the better approach,
allowing to learn a model on a huge dataset of one class
alone.

Transition to one-class SVMs. Two-class and one-
class learning methods both have their advantages and short-
comings. Focusing only on unsupervised one-class methods
means ignoring our available malicious data, which makes
calibrating the detector much harder. Focussing only on the
supervised two-class methods, however, leaves the problem
of the imbalanced size of both datasets. To achieve a smooth
transition between both methods, we include a parameter ω
into the model selection phase of the learning method. A
high value of ω increases the weight on one specific class,
which means that the two-class SVM operates like a one-
class SVM for this class. This is done by applying a higher
penalty for misclassifications of this class. It is also possi-
ble to choose ω such that it balances two differently sized
classes. An example of the models resulting in using three
different values of ω is illustrated in Figure 4 on a toy data
distribution.

The utilization of ω during model selection facilitates a di-
rect comparison of the detection performance of a two-class
learning method with both a benign one-class learner and a
malicious one-class learner, simply by applying different val-
ues of ω during model selection. A hope is that a properly
defined ω could lead to a model better adapted to the imbal-
ance of the two classes. As a result, neither the one-class nor
the two-class models would be expected to be the optimal
solution, but instead an optimized model in between.

4.3 Learning Framework
The long-term dataset acquired during this study, as well

as the different selected features and learning methods al-
low for an extensive experimental evaluation. This whole
evaluation is conducted in an offline manner under utiliza-
tion of the SVM library LibLinear [9] for training the model.
The extraction of q-gram features from the static and the
dynamic reports leads to a static and a dynamic detector,
respectively. Taking insights from Cujo, we fix the param-
eter q to q = 4 for the static reports and to q = 3 for the
dynamic reports.

To evaluate the behavior of the different detectors during
the whole time period of the study, we train and test our sys-
tem weekly, i.e. every seven days all models are re-trained.
To cope with the circumstance that the number of malicious
reports is much smaller than the number of available benign
reports, all past malicious reports are used during the train-
ing phase, but only the last two weeks of benign reports are

used. We split these two week dataset in half, such that the
newest reports constitute the training data, while the older
reports constitute the validation data. On these datasets we
perform a model selection for both the static and dynamic
models over the cost parameter c and the parameter ω. Then
for each model the hyperplane is calibrated as follows: First
the false positive rate of the current model is calculated on
the validation data. Then the hyperplane is shifted such
that a preselected false positive rate on the validation data,
FPval(Θ), defined by a threshold Θ, is not exceeded. Fi-
nally the model with the highest true positive rate on the
validation data is selected.

Being able to define Θ is a vital component of training
a learning based detector, suitable for the network environ-
ment at hand, because some environments simply require
lower false positive rates than others. When testing the best
model this targeted false positive rate is achieved with only
minor deviations. Consequently no achieved false positive
rates are shown in the evaluation, as they are close to the
target values defined using the parameter Θ.

In our practical evaluation we pick a value of FPval(Θ) =
0.001 (i.e. 0.1%) as a good compromise of low false positive
and high true positive rate. For some experiments, however,
we also consider FPval(Θ) = 0.0001 to highlight specific
properties. For convenience the Θ with FPval(Θ) = 0.001
is further on denoted as Θ0.001, and Θ with FPval(Θ) =
0.0001 is denoted as Θ0.0001. Note that the combination
of the collection framework of Section 3.1 and this learning
framework realizes a fully automated system for collecting,
analyzing and detecting malicious JavaScript code.

5. EXPERIMENTS
In the evaluation we first investigate, whether learning-

based detectors can easily be integrated in a completely au-
tomated tool-chain without manually sanitized data. This
is empirically supported by a long-term evaluation of the
performance of the different detectors and features utilized
in our learning framework. Aided by this long-term eval-
uation the second part discusses the influence of different
re-training procedures on the performance of the different
detectors.

5.1 General Performance Evaluation
The following sections analyze the feasibility of learning-

based detectors for the application in a completely auto-
mated framework. First of all the detection performance
of two commonly used anti-virus tools is determined on our
datasets, which is compared to the performance of our learn-
ing framework. In the next step the performance of our
learning framework on a sanitized dataset is shown. After
that examples and reasons for misclassified reports and the
influence of ω are discussed.

5.1.1 Performance of AV-Scanners
The two anti-virus tools Avira Antirvir and AVG Anti-

Virus have been tested on the original JavaScript code of
our complete benign and malicious datasets. Both employ
different analysis engines capable of detecting maliciously
behaving JavaScript code. Table 2 shows the results of this
analysis.

The achieved true positive rates are quite low. This result
comes as a surprise, considering the extensive initial verifi-
cation steps of our system, and considering the circumstance



Avira AVG
JavaScript Code Antivir Anti-Virus
Benign URLs FP 0.0007 0.0003
Malicious URLs TP 0.2760 0.3140

Table 2: False positive and true positive rates of two
anti-virus tools.

that the anti-virus tools have been applied several months
after the last day of data collection, which gave the anti-
virus vendors enough time to update their signatures. The
achieved false positive rates range between the targeted false
positive rates of FPval(Θ0.001) and FPval(Θ0.0001). This
permits an easy comparison of the corresponding true posi-
tive rates to those achieved by our detectors.

5.1.2 Performance of Detectors
Additional to the performance of the individual static and

dynamic detectors, the performance of a disjunctive combi-
nation of both detectors is evaluated as well. This combined
detector triggers an alarm if either the static or the dynamic
detector does so. The resulting average performance values
of the different detectors, obtained from weekly re-trained
models tested on the following week, are listed in Table 3.

Detector Θ0.0001 Θ0.001

Static 0.3525 0.5409
Dynamic 0.4931 0.6208
Combined 0.5451 0.6733

Table 3: Average detection performance of the dif-
ferent detectors.

While the static and dynamic detectors are nearly on par,
the combination of both is significantly higher. In com-
parison to the performance of the anti-virus tools, all de-
tectors show a good detection performance. Especially the
combined detector is able to classify approximately twice as
much malicious URLs correctly. Surprisingly however, none
of the considered features or learning methods attains a de-
tection rate of more than 90%, as reported from previous
work, which used manually sanitized datasets. To investi-
gate this further we decide to create a subset of the malicious
JavaScript code using the anti-virus tools as an additional
sanitization instance. The assumption is that previous work
always used manually sanitized datasets, so this way of au-
tomatic sanitization is expected to result in a better detec-
tion performance. In this new AV-Alerts dataset only those
890 URLs are included which both anti-virus tools raised an
alert for. The results of the evaluation of our learning-based
detection methods on this dataset are listed in Table 4.

Detector Θ0.0001 Θ0.001

Static 0.7264 0.8446
Dynamic 0.7394 0.8480
Combined 0.8450 0.9319

Table 4: Average true positive rates of the different
detectors, tested on the AV-alerts.

Especially the combined detector shows an impressively
increased detection rate for both values of Θ, reaching a
performance much closer to that of methods which are solely

tested on manually sanitized data. This illustrates that –
under the assumption of a sanitized dataset – the results of
previous papers can be reproduced.

The application in a completely automated system, how-
ever, drastically decreases the detection performance. We
see two main reasons for this unexpected behavior. While
the verification phase of the collection framework acts prop-
erly in defining, whether the scripts of a potentially mali-
cious URL really behave maliciously or not, we can not be
certain that the specific malicious behavior Shelia detected
is also detected and reported by ADSandbox. Because the
learned model builds on those reports of ADSandbox, it
learns features that do not contain the initial malicious be-
havior any longer. We denote this as the semantic gap, be-
cause it is caused by the discrepancy of detection and learn-
ing mechanisms. The second reason is of a temporal kind.
Because JavaScript attacks are very volatile and often active
for only a few hours, any delay between the verification step
and the creation of the reports may lead to a worse learned
model, because the attack may already be inactive again and
the malicious code not present anymore. We denote this as
time delays.

5.1.3 Misclassification Analysis
There exist different reasons for misclassifications. One

general reason is that the datasets are noisy, i.e. not all
members of a class behave in accordance to their label. For
the benign reports this means that, as explained in Section
3.1.2, the verification phase for the JavaScript code of benign
URLs does not guarantee to exclude all malicious JavaScript
code. Due to the semantic gap this is even more complex for
the reports of malicious URLs. Shelia might respond to a
type of malicious behavior, which the static or dynamic re-
ports of ADSandbox do not reflect. As a result the dynamic
and static reports look benign. The dynamic reports might
even be empty or have completely failed to execute. To test
this last assumption, the malicious dataset has been fur-
ther filtered, leaving only those 2,179 malicious URLs which
did not result in errors in the dynamic execution. When
testing the dynamic detectors on this dataset, the average
detection performance increased only very slightly (approx-
imately 1.5%), meaning that these errors in the dynamic
execution do not influence the quality of the reports signifi-
cantly.

To get a better idea of the concrete reasons for misclassifi-
cations in our system, we analyze the false positives and the
false negatives that occurred using a representative model on
the complete dataset. The histograms of the corresponding
predicted scores of the static and the dynamic detectors, as
well as the concrete values of Θ0.001, are illustrated in Figure
5. As a result we find that many of the false positives actu-
ally are malicious. Concrete examples of code injection, the
dynamic execution of long obfuscated sequences, redirects
to suspicious websites, hidden iframes and heapspraying oc-
curred. Those false positives that have really shown a benign
behavior often contained features similar to malicious fea-
tures, e.g. dynamic execution of obfuscated code or hidden
iframes, which renders a proper classification difficult.

The verification process of the malicious URLs is more
elaborated, especially due to the incorporation of Shelia.
Therefore none of the false negatives is expected to contain
benign JavaScript code. For this reason it is an indicator
of the semantic gap that many samples of the false nega-
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Figure 5: Histograms of the predicted scores of the
optimized models of the static (top) and dynamic
(bottom) detectors on the complete dataset. The
dashed line represents Θ0.001.

tives did not expose any behavior at all. Other misclassi-
fications have been caused by malicious code looking very
similar to benign code, i.e. omitting features usually found
in malicious reports, like heapspraying, code injection or the
dynamic execution of obfuscated code.

5.1.4 Performance of Different Learning Methods
Another interesting question is the impact of the class-

weight parameter ω on the performance of the different de-
tectors. Specifically, whether the detection performance of
the normal two-class model can be optimized by this step,
and how the different one-class approaches perform. The
results are listed in Table 5. The low performance of the
different one-class models does not come as a surprise. The
learned model simply can not rely on one class only, and the
calibration does not work that well either. The detection
performance of the two-class model is boosted by the use of
the optimized ω, resulting in much better results than those
of the generic two-class model. The optimal models of our
evaluation always use values of ω corresponding to a model
in between a benign one-class model and a two-class model.
An analysis of the development of the optimal values of ω
during the re-training setup also shows a steady shift of ω
towards the benign one-class model, caused by the continu-
ously growing number of malicious data points.

Θ0.001

Learning Models Static Dynamic
One-Class Benign 0.0375 0.0303
One-Class Malicious 0.1314 0.1757
Two-Class 0.4560 0.4794
Two-Class Optimized 0.5409 0.6208

Table 5: Average true positive rates of the different
models.

Integrating a class weighting into the training phase of a
detector to balance differently sized datasets improves the
overall performance. The insight that the chosen optimal ω
resides closer to a benign one-class learning model is helpful
as well, because the benign one-class detector is due to the
stability of its database, i.e. the better availability of benign

data, more desirable than a model trained on continuously
changing malicious data.

5.2 Analysis of Re-Training Procedures
The functionality and quantity of JavaScript code in real-

life websites grows steadily, as we can see in Figure 3. A
model should reflect this, because a model trained only once
might be out-dated very soon. Thus a learning-based de-
tector which is regularly re-trained on the latest datasets is
assumed to achieve better models. The biggest disadvantage
of this approach is the continuous requirement to regularly
spend time and resources to compute an updated detector.
While such learning efforts can be minimized, e.g. by using
incremental learning [15], a confirmation of the assumed ad-
vantage of regular re-training in the domain at hand has yet
to be done. For this purpose the following sections focus on
a comparison of the long-term performance of the different
detectors, either utilizing frequent re-training or conducting
a one-time training only.

5.2.1 Regular Re-Training
In the re-training setup, the detectors are re-trained each

week and tested on the following week. The corresponding
overall average performance results have been discussed in
Section 5.1.2. In Figures 6, 7, 8 and 9 the weekly average
is represented by the dashed line. The light vertical bars
contained in the figures visualize days where for none of the
8,000 verified malicious URLs an actual malicious behavior
could be exposed.

Figure 6 illustrates the performance values of the static de-
tector. A first observation is the immense variance of both
false and true positive rates. The picture is slightly different
for the dynamic detector, illustrated in Figure 7. Its false
positive rates show much less variance, while its true posi-
tive rates fluctuate massively, even more than the ones of the
static detector. An especially interesting observation is, that
the true positive rates of both the static and dynamic de-
tector are weak in the beginning, while generally improving
the average performance afterwards. This is caused by the
low number of malicious data available for training at the
very beginning of the evaluation. With the steadily increas-
ing number of malicious reports available during training,
however, better models are achieved. Another interesting
observation is the performance drop of the models closely
following day 78. At that day a huge amount of URLs has
been updated after a down-time of the collection framework,
which had an impact on the dynamic detector, but not the
static detector.

The long-term performance of the combined detector, de-
picted in Figure 8, is more stable than the one of the indi-
vidual detectors. Especially the periods of low performance
of the dynamic detector are nicely backed up by the static
detector. The general false positive rate has doubled as well,
but the combination of the detectors still performs best.

5.2.2 One-Time Training
In the one-time training setup a single model is trained

on both the static and the dynamic reports, respectively.
Because a sufficient amount of malicious data is vital for
achieving a good detection performance, the model is not
trained on the first weeks, but on the seventh, where a suf-
ficient amount of malicious data is finally available. These
models are then tested on all consecutive days. Note that for



20 30 40 50 60 70 80 90 100 110 120 130
Day

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

Fa
ls

e 
Po

si
tiv

e 
Ra

te

20 30 40 50 60 70 80 90 100 110 120 130
Day

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 6: From top to bottom: False and true posi-
tive rates of the static detector per day with regular
re-training, using Θ0.001.
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Figure 7: From top to bottom: False and true posi-
tive rates of the dynamic detector per day with reg-
ular re-training, using Θ0.001.

reasons of comparability the average detection performances
of the previous tables are calculated on this range as well.

The dynamic detector exposes some interesting proper-
ties when comparing its re-training performance, depicted
in Figure 7, with the corresponding one-time performance,
depicted in Figure 9. The re-trained models show a much
more varying performance than the model which has been
trained only once. Especially the true positive rate is much
more stable. The implication for the dynamic detector is,
that a re-trained model is not necessarily better than an ex-
isting one. The static detector does not expose such varying
behavior.

In terms of the long-term detection performance during
the one-time training setup, an initial expectation was that
applying an old model on newer data could lead to a steady
performance decrease. This could not be observed for the
static detector, where the false positive rate remained very
stable and even the true positive rates follow closely the
development curves observed in the re-training setup. The
performance of the dynamic detector in Figure 9 does com-
ply with that initial expectation a little more. The false
positive rate, while stable for quite some time, starts to in-
crease from day 100, and the true positive rate is below the
average for nearly two weeks at that time. These results
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Figure 8: From top to bottom: False and true pos-
itive rates of the combined detectors per day with
regular re-training, using Θ0.001.
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Figure 9: False and true positive rates of the dy-
namic detector per day, in the one-time training
setup, using Θ0.001.

suggest that using the detectors alone for such a long time
without re-training is no viable option.

Detector Θ0.0001 Θ0.001

Static 0.2444 0.5027
Dynamic 0.3371 0.5531

Table 6: Average true positive rates of the different
detectors applied during one-time training.

Table 6 finally shows the average results during the evalu-
ation of the one-time training period. The performance val-
ues are generally lower than those of the re-training exper-
iments, especially for Θ0.0001 (see Table 3 for comparison).
The implications for the static detector are that while the
detection performance does not decrease or vary that much
during the one-time training setup, its average performance
is considerably lower than the one achieved with regularly
re-trained models. The average performance of the dynamic
detector also suffers, but as discussed above, the lower vari-
ance of the detection performance of the dynamic detector
makes a less frequent re-training of this detector a viable
option.



6. CONCLUSION
In this paper we have investigated the feasibility to com-

bine a learning-based system for the detection of malicious
JavaScript code with a completely automated system for the
collection and analysis of JavaScript code. The behavior and
detection performance of different learning-based detectors,
based upon different features and learning methods, have
been evaluated on a huge set of automatically collected data,
where previous work solely used manually sanitized datasets.

The results of this evaluation have shown that the vision
of a complete, automated, learning-based system has not
been achieved. Two main factors have been identified as
contributors to these results. The first reason is the seman-
tic gap occurring when malicious activity is present during
the visit and verification of a webpage but no longer during
the subsequent learning stage. Already a slight discrepancy
in this information transfer means that malicious activity
may be present but is not exposed to the learning method.
The second reason is the time delay, caused by the volatility
of JavaScript attacks which are often active for only a few
hours. Due to the large amount of data accumulated and
processed during the visit and verification of the URLs, a sig-
nificant amount of time may pass between the verification of
a malicious webpage and the resulting learning stage. Con-
sequently the malicious code may not be present anymore,
which results in a sub-optimal detection model, because it
is trained on incomplete data.

Fortunately these problems can be solved by creating an
integrated system which combines the components of col-
lection, analysis and detection very closely. As a result the
complete behavior, exposed during the collection and veri-
fication of the malicious URLs, should be available to the
learning component with a minimum time delay.

Furthermore the evaluation has shown that better models
can be learned by integrating the class-specific weight ω in
the model selection and taking care of a sufficient amount of
malicious data. Combining different detectors is also impor-
tant, because they often supplement each other. And finally
it has been shown that a regular re-training mostly results
in a better detection performance than using a single model
for a longer time period.

To bring autonomous learning to reality, a critical step is
the design and development of an integrated analysis and
learning system. Besides that another important idea is the
investigation of a more intelligent way of re-training the dif-
ferent models based on their comparative performance. For
example one could re-train one detector regularly, but in-
stead of relying completely on the newly trained detector,
just use it in parallel to the current one. Also methods of
online learning are an interesting option for that purpose.
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