
Journal of Machine Learning Research 13 (2012) 3177-3181 Submitted 5/12; Revised 8/12; Published 11/12

Sally: A Tool for Embedding Strings in Vector Spaces

Konrad Rieck KONRAD.RIECK@UNI-GOETTINGEN.DE

University of Göttingen

Goldschmidtstraße 7

37077 Göttingen, Germany

Christian Wressnegger WRESSNEGGER@IDALAB.DE

idalab GmbH

Adalbertstraße 20

10977 Berlin, Germany

Alexander Bikadorov ABIKU@CS.TU-BERLIN.DE

Technische Universität Berlin

Franklinstraße 28/29

10587 Berlin, Germany

Editor: Antti Honkela

Abstract

Strings and sequences are ubiquitous in many areas of data analysis. However, only few learning

methods can be directly applied to this form of data. We present Sally, a tool for embedding strings

in vector spaces that allows for applying a wide range of learning methods to string data. Sally

implements a generalized form of the bag-of-words model, where strings are mapped to a vector

space that is spanned by a set of string features, such as words or n-grams of words. The implemen-

tation of Sally builds on efficient string algorithms and enables processing millions of strings and

features. The tool supports several data formats and is capable of interfacing with common learn-

ing environments, such as Weka, Shogun, Matlab, or Pylab. Sally has been successfully applied for

learning with natural language text, DNA sequences and monitored program behavior.

Keywords: string embedding, bag-of-words models, learning with sequential data

1. Introduction

Strings and sequences are a common representation of data and many applications of machine learn-

ing center on analyzing strings, for example, for discovering topics in natural language text, iden-

tifying genes in DNA, or filtering spam messages. However, the vast majority of learning methods

can not be directly applied to string data, as these methods usually operate in vector spaces and re-

quire numerical vectors as input for learning. While a large body of research has studied techniques

for learning with strings—most notably work on mapping strings to vectors (see Salton et al., 1975;

Damashek, 1995) and string kernels (see Sonnenburg et al., 2007; Shawe-Taylor and Cristianini,

2004)—only few software tools have been made available to the community so far.

In this article, we present Sally, a general-purpose tool for mapping a set of strings to a set of

vectors. This mapping is referred to as embedding of strings and allows for applying a wide range

of learning methods to string data. Sally implements a generalized form of the bag-of-words model,

where strings are mapped to a high-dimensional vector space that is spanned by a set of string

features. Different types of features are supported for this embedding, which range from words

c©2012 Konrad Rieck, Christian Wressnegger and Alexander Bikadorov.

RIECK, WRESSNEGGER AND BIKADOROV

delimited by whitespace characters to positional and sorted n-grams. Sally proceeds by counting

the occurrences of these features in each string and generating a sparse vector of frequency values.

The implementation of Sally builds on string algorithms with linear run-time and space complexity,

which enables processing millions of strings and features.

Sally is not the only tool for learning with strings; some learning toolboxes also provide support

for extracting features from strings or computing string kernels. The respective implementations are

often tightly coupled with the toolboxes and restricted to specific applications. By contrast, Sally

can be thought of as a “Swiss Army Knife” for embedding strings: Instead of targeting a single

toolbox or application, Sally provides a generic link between string data and learning methods. The

tool supports several data formats and is capable of interfacing with common learning environments,

such as Weka, Shogun, Matlab, or Pylab. Sally has been successfully applied in diverse learning

settings, including text categorization, intrusion detection, clustering of malicious software, and

analysis of electricity consumption (cf. Rieck and Laskov, 2008; Wahl et al., 2009; Rieck et al.,

2011; Jawurek et al., 2011).

2. Embedding of Strings

Sally implements a generalized form of the classic bag-of-words model (Salton et al., 1975). A

string is represented by a set of string features (“the bag”) and mapped to a vector space whose

dimensions are associated with the occurrences of these features. This association is created using

a hash function, where the hash value of each feature defines its dimension. Moreover, the tool

extends the original bag-of-words model by supporting features derived from string kernels, such as

the spectrum kernel (Leslie et al., 2002), the weighted-degree kernel (Sonnenburg et al., 2007) and

the word kernel (Lodhi et al., 2002).

2.1 String Features

Sally supports three basic types of string features for constructing a bag-of-words model. These

types are defined implicitly by specifying delimiters (Configuration: ngram delim) and the number

of consecutive bytes/words to consider (Configuration: ngram len).

1. Words. The strings are partitioned into substrings using a set of delimiter characters D.

Such partitioning is typical for natural language processing, where the delimiters are usu-

ally defined as whitespace and punctuation characters (Configuration: ngram delim = D;

and ngram len = 1;).

2. Byte n-grams. The strings are characterized by overlapping byte sequences of length n. These

features are frequently used, if only little information about the structure of the strings is

known, such as in bioinformatics and computer security (Configuration: ngram delim =

""; and ngram len = n;).

3. Word n-grams. The strings are described by overlapping word sequences of length n. These

features require the definition of delimiters D and a length n. They are often used as a

coarse way for capturing structure in text and tokens (Configuration: ngram delim = D;

and ngram len = n;).

Additionally to these basic types, Sally supports extensions for refining the set of string features.

For instance, inspired by the weighted-degree kernel (Sonnenburg et al., 2007), Sally supports the

3178

SALLY

extraction of positional features. Each string feature is extracted along with its position in the string

(Configuration: ngram pos = 1;). As an example, the string abab then contains the positional

2-grams ab1, ba2 and ab3.

Moreover, as with any data, strings can suffer from noise. Words may be swapped in text and

DNA bases flip positions due to mutations. Such noise can be compensated by the extension of

sorted n-grams (Configuration: ngram sort = 1;). After the extraction of an n-gram, its elements

are sorted, thereby removing the local ordering of the data. This removal may improve performance,

if the strings suffer from local perturbations.

Finally, Sally also supports the use of stop words (Configuration: stopword file) and the

thresholding of values (Configuration: thres low and thres high). When analyzing natural lan-

guage text, these extensions allow for filtering irrelevant and (in)frequent words from the resulting

feature vectors.

2.2 Embedding Function

After the extraction of string features, Sally proceeds to construct a feature vector for each string in

the defined output format. This construction can be formally defined as a mapping function Φ (see

Rieck and Laskov, 2008),

Φ : X −→ R
|S |
, Φ : x 7−→ (φs(x))s∈S

,

where X corresponds to the domain of strings and S to the set of (hashed) string features. Depending

on the configuration, the inner function φ either returns the number of occurrences of the feature s in

the string x, a binary flag for the occurrence of s or an TFIDF weighting of s. Furthermore, different

normalizations can be applied to the resulting vectors (Configuration: vect embed = embed and

vect norm = norm).

The size of the vector space can be controlled using the number of bits for hashing the string fea-

tures (Configuration: hash bits), where for k bits the vector space may span up to 2k dimensions.

While such high dimensionality is favorable for constructing an expressive representation of strings,

it requires an efficient implementation to guarantee a tractable run-time. Fortunately, the number of

features extracted by Sally is linear in length of each string and the resulting vectors are extremely

sparse. This sparsity enables Sally to embed the strings in linear time and space, irrespective of the

dimensionality of the vector space (cf. Rieck and Laskov, 2008; Shi et al., 2009).

3. Run-time Evaluation

To illustrate the efficient implementation of Sally, we conduct a run-time evaluation with data

sets from four application domains: DNA sequences (ARTS; Sonnenburg et al., 2006), protein

sequences (SPROT; O’Donovan et al., 2002), email messages (ENRON; Klimt and Yang, 2004) and

text documents (RFC; www.ietf.org/rfc.html). Statistics of the data sets are shown in Table 1. As

a baseline, we consider a typical Matlab and Python script for embedding strings. Both scripts are

60–70 lines long and make use of hashing for efficiently mapping strings to vectors. For each data

set and implementation, we measure the run-time for embedding strings using byte/word 5-grams

as features. We set the size of the feature hashing to 24 bits (≈ 16.7 million dimensions). The

evaluation is conducted on an Intel Xeon CPU with 2.6GHz with 4 GB of memory.

Results for the evaluation are shown in Table 1. All implementations are able to embed the

strings in reasonable time (less than 10 minutes). However, Sally consistently outperforms the

3179

RIECK, WRESSNEGGER AND BIKADOROV

other implementations. In comparison with the Python script, Sally embeds the strings 2.5× faster

on average, where for Matlab a speedup of 9.5× is attained. This performance demonstrates the

efficiency of Sally on different types of data, rendering it the tool of choice in applications where

time matters, such as in large-scale and on-line learning.

Data sets ARTS SPROT ENRON RFC

Data set size 108 DNA bases 107 proteins 106 words 107 words

Number of strings 46,794 150,807 33,702 4,590

String features byte 5-grams byte 5-grams word 5-grams word 5-grams

Number of features 1,024 (= 45) 2,800,728 4,070,853 12,136,059

Run-time performance

Matlab script 528 s (9.6×) 381 s (7.3×) 158 s (11.4×) 530 s (9.6×)

Python script 140 s (2.5×) 183 s (3.5×) 30 s (2.1×) 113 s (2.1×)

Sally 55 s — 52 s — 14 s — 55 s —

Table 1: Run-time performance of Sally and typical scripts for embedding strings.

A fine-grained analysis of the run-time of Sally is shown in Figure 1. The embedding shows

a linear run-time complexity even for large strings. On average, Sally is able to map a string to a

vector within 0.3 ms including reading and writing of data, which amounts to an overall throughput

of 3,000 strings per second.

101 102 103 104 105 106

Size of strings

10-3

10-2

10-1

100

101

102

R
u
n
-t

im
e
 (

m
s)

Estimate

Average

(a) Email messages (word 5-grams)

100 101 102 103 104 105

Size of strings

10-3

10-2

10-1

100

101

102

R
u
n
-t

im
e
 (

m
s)

Estimate

Average

(b) Protein sequences (byte 5-grams)

Figure 1: Detailed run-time analysis of Sally. The run-time per string is measured on the email

messages of ENRON and the protein sequences of SPROT.

4. Conclusions

Sally provides a generic link between the wealth of string data and the available machinery of learn-

ing methods. Instead of targeting a specific application domain, the tool implements a generalized

form of the bag-of-words model, which allows for learning with various types of string data, such

as natural language text (Rieck and Laskov, 2008), payloads of network packets (Wahl et al., 2009)

or even traces of electricity consumption (Jawurek et al., 2011). Moreover, by supporting different

input and output formats, the tool can easily interface with common learning environments. Sally is

open source software and available at the webpage http://mlsec.org/sally.

3180

SALLY

References

M. Damashek. Gauging similarity with n-grams: language-independent categorization of text. Sci-

ence, 267(5199):843–848, 1995.

M. Jawurek, M. Johns, and K. Rieck. Smart metering de-pseudonymization. In Proc. of Annual

Computer Security Applications Conference (ACSAC), pages 227–236, Dec. 2011.

B. Klimt and Y. Yang. The Enron corpus: a new dataset for email classification research. In Proc.

of Conference on Email and Anti-Spam (CEAS), 2004.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein classifica-

tion. In Proc. of Pacific Symposium on Biocomputing (PSB), pages 564–575, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using

string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, and R. Apweiler. High-quality

protein knowledge resource: SWISS-PROT and TrEMBL. Briefings in Bioinformatics, 3(3):

275–284, 2002.

K. Rieck and P. Laskov. Linear-time computation of similarity measures for sequential data. Journal

of Machine Learning Research, 9(Jan):23–48, Jan. 2008.

K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of malware behavior using

machine learning. Journal of Computer Security (JCS), 19(4):639–668, June 2011.

G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communications

of the ACM, 18(11):613–620, 1975.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University

Press, 2004.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, and S. Vishwanathan. Hash kernels for struc-

tured data. Journal of Machine Learning Research, 10(Nov):2615–2637, 2009.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: accurate recognition of transcription starts in human.

Bioinformatics, 22(14):e472–e480, 2006.

S. Sonnenburg, G. Rätsch, and K. Rieck. Large scale learning with string kernels. In Large Scale

Kernel Machines, pages 73–103. MIT Press, Sept. 2007.

S. Wahl, K. Rieck, P. Laskov, P. Domschitz, and K.-R. Müller. Securing IMS against novel threats.

Bell Labs Technical Journal, 14(1):243–257, May 2009.

3181

